jueves, 29 de mayo de 2014

Química orgánica


La química orgánica es una rama de la química en la que se estudian los compuestos del carbono y sus reacciones.
Existe una amplia gama de sustancias (medicamentos, vitaminas, plásticos, fibras sintéticas y naturales, hidratos de carbono, proteínas y grasas) formadas por moléculas orgánicas.
Los químicos orgánicos determinan la estructura de las moléculas orgánicas, estudian sus reacciones y desarrollan procedimientos para sintetizar compuestos orgánicos.
Esta rama de la química ha afectado profundamente la vida desde el siglo XX: ha perfeccionado los materiales naturales y ha sintetizado sustancias naturales y artificiales que, a su vez, han mejorado la salud, han aumentado el bienestar y han favorecido la utilidad de casi todos los productos actuales.
Materiales orgánicos son todos aquellos que poseen en su estructura química el elemento carbono, por lo tanto entran en su categoría todos los seres vivos, los hidrocarburos, y en especial el petróleo y sus derivados, etc.
La aparición de la química orgánica se asocia a menudo al descubrimiento, en 1828, por el químico alemán Friedrich Wöhler, de que la sustancia inorgánica cianato de amonio podía convertirse en urea, una sustancia orgánica que se encuentra en la orina de muchos animales. Antes de este descubrimiento, los químicos creían que para sintetizar sustancias orgánicas era necesaria la intervención de lo que llamaban 'la fuerza vital' es decir, los organismos vivos.
quimicorganica001

El experimento de Wöhler rompió la barrera entre sustancias orgánicas e inorgánicas. Los químicos modernos consideran compuestos orgánicos a aquellos que contienen carbono y otros elementos (que pueden ser uno o más), siendo los más comunes: hidrógeno, oxígeno, nitrógeno, azufre y los halógenos. En la actualidad, a la química orgánica se la llama también química del carbono. (Ver: Grupos funcionales).
Importancia de la química orgánica
A pesar de su aparición tardía en la historia de la química, la química de los compuestos del carbono es en la actualidad la rama de las ciencias químicas que crece con mayor rapidez. La variedad de productos derivados del carbono puede resultar prácticamente ilimitada debido a las propiedades singulares de dicho átomo y, por tanto, constituye una fuente potencial de nuevos materiales con propiedades especiales, de medicamentos y productos sanitarios, de colorantes, de combustibles, etc.
Algunos de estos ejemplos son considerados a continuación.
La materia viviente es, en parte, materia constituida por derivados del carbono. Las transformaciones que sufren los seres vivos, y que observamos a simple vista, se corresponden, desde un punto de vista submicroscópico o molecular, con cambios o reacciones químicas de las sustancias biológicas. Azúcares, grasas, proteínas, hormonas, ácidos nucleicos, son algunos ejemplos de sustancias, todas ellas compuestos del carbono, de cuya síntesis y degradación en el interior de los organismos vivos se ocupa la bioquímica.
Medicamentos
El mundo de los medicamentos ha constituido en el pasado y constituye en la actualidad una parte importante de la investigación y el desarrollo de productos derivados del carbono. Su importancia en orden a mejorar la esperanza de vida de los seres humanos y sus condiciones sanitarias hace de esta área del conocimiento científico una herramienta imprescindible para la medicina. Pero, ¿por qué los medicamentos son, por lo general, compuestos orgánicos? ¿Cuál es el origen de este hecho?
Los fármacos actúan en el organismo a nivel molecular y es precisamente el acoplamiento entre la molécula del fármaco y el receptor biológico, es decir, el sitio de la célula o del microorganismo sobre el cual aquél actúa, el último responsable de su acción curativa. Pero para que ese acoplamiento sea posible ambos agentes, fármaco y receptor, tienen que presentar una cierta complementariedad tal y como sucede con una cerradura y su correspondiente llave.
Los receptores biológicos suelen ser moléculas de gran tamaño y por este motivo son las cadenas carbonadas de los compuestos orgánicos las que pueden poseer una estructura geométrica que mejor se adapte a la porción clave del receptor; tal hecho, junto con la presencia de grupos funcionales con acciones químicas definidas, son responsables de la abundancia de sustancias orgánicas entre los productos farmacéuticos.
Polímeros orgánicos
Los polímeros orgánicos son compuestos formados por la unión de dos o más unidades moleculares carbonadas idénticas que reciben el nombre de monómeros. La unión de dos monómeros da lugar a un dímero, la de tres a un trímero, etc.
Los polímeros pueden llegar a contener cientos o incluso miles de monómeros, constituyendo moléculas gigantes o macromoléculas.
Existen en la naturaleza diferentes sustancias que desde un punto de vista molecular son polímeros, tales como el caucho o las proteínas; pero en el terreno de las aplicaciones los más importantes son los polímeros artificiales. Su síntesis en los laboratorios de química orgánica ha dado lugar a la producción de diferentes generaciones de nuevos materiales que conocemos bajo el nombre genérico de plásticos.
La sustitución de átomos de hidrógeno de su cadena hidrocarbonada por otros átomos o grupos atómicos ha diversificado las propiedades de los plásticos; la investigación en el terreno de los polímeros artificiales ha dado como resultado su amplia implantación en nuestra sociedad, sustituyendo a materiales tradicionales en una amplia gama que va desde las fibras textiles a los sólidos resistentes.
Usos de compuestos orgánicos
Alcanos: pueden ser utilizados como “marcadores” para estimar la ingestión, digestibilidad y composición de la dieta para herbívoros.
Alquenos: el Halotano (2bromo-2cloro-1,1,1-trifluoroetano) es utilizado como anestésico volátil halogenado en medicina.
Alquinos: el gas acetileno es incoloro, inodoro - el olor que a veces se percibe cuando se lo prepara a partir del carburo de calcio se debe al desprendimiento de gases provenientes de impurezas de fósforo presente en el carburo de calcio. Su uso más antiguo han sido como gas para iluminación, a tal punto que ciudades enteras han sido alumbradas con acetileno, Nueva York, por ejemplo. Se utilizaban picos especiales para producir una adecuada mezcla de acetileno y aire, obteniéndose una llama blanca muy intensa.
Alcoholes: se utiliza experimentalmente el alconafta como combustibles de vehículos como combustibles alternativos.
Cetonas y Aldehídos: se caracterizan ambos por tener el grupo carbonilo por lo cual se les suele denominar como compuestos carbonílicos. Estos compuestos tienen una amplia aplicación tanto como reactivos y disolventes así como su empleo en la fabricación de telas, perfumes, plásticos y medicinas. En la naturaleza se encuentran ampliamente distribuidos como proteínas, carbohidratos y ácidos nucleicos tanto en el reino animal como vegetal.
Acidos: El ácido sulfúrico (H2SO4) se utiliza en producción de fertilizantes, para la producción de ésteres, ácido fosfórico, ácido acético, ácido cítrico y otros diversos productos químicos, en la industria de explosivos, industria farmacéutica, como agente químico en análisis, refinación de petróleo, sistemas de tratamientos de agua (como purificador), industria de plásticos y fibras, limpieza de materiales, etc.
Aminas: se utilizan como base en la fabricación de plaguicidas agrícolas.
Amidas: se usan principalmente como agentes espumantes y espesantes en la industria cosmética.
Esteres: La familia de los ésteres es muy variada y encuentra un amplio uso en cosmética. Los más importantes son ésteres de ácidos carboxílicos de cadena saturada formados por reacción con óxido de etileno, sorbitol, glicerina, etc...
Éteres: El más importante de los éteres simétricos es el dietil éter, el disolvente empleado comúnmente en la extracción y preparación de los reactivos de Grignard.
Isomería
Tipos de isomería
La isomería consiste en que dos o más sustancias que responden a la misma fórmula molecular presentan propiedades químicas y/o físicas distintas.
Los distintos tipos de isomería se clasifican según el siguiente esquema:
   Tipos de isomería      clasiso.gif (3766 bytes)      
Isomería estructural o plana
La isomería estructural o plana se debe a diferencias de estructura y puede explicarse mediante fórmulas planas.
a) Isomería de cadena
Es la que presentan las sustancias cuyas fórmulas estructurales difieren únicamente en la disposición de los átomos de carbono en el esqueleto carbonado, por ejemplo:
 
 
  
b) Isomería de posición
Es la que presentan sustancias cuyas fórmulas estructurales difieren únicamente en la situación de su grupo funcional sobre el esqueleto carbonado.
Veamos algún ejemplo:
Isómeros con fórmula molecular C3H8
  
  
c) Isomería de función
Es la que presentan sustancias que con la misma fórmula molecular presentan distinto grupo funcional, por ejemplo:
Isómeros con fórmula molecular C2H6O  
  
  
  
  
Estereoisomería: Isomería geométrica
La estereoisomería la presentan sustancias que con la misma estructura tienen una diferente distribución espacial de sus átomos.
Una de las formas de estereoisomería es la isomería geométrica. La isomería geométrica desde un punto de vista mecánico, se debe en general a que no es posible la rotación libre alrededor del eje del doble enlace. Es característica de sustancias que presentan un doble enlace carbono-carbono:
fdoblee.gif (418 bytes), así como de ciertos compuestos cíclicos.
Para que pueda darse en los compuestos con doble enlace, es preciso que los sustituyentes sobre cada uno de los carbonos implicados en el doble enlace sean distintos. Es decir, que ninguno de los carbonos implicados en el doble enlace tenga los dos sustituyentes iguales.
Las distribuciones espaciales posibles para una sustancia que con un doble enlace son:
  • Forma cis; en ella los sustituyentes iguales de los dos átomos de carbono afectados por el doble enlace se encuentran situados en una misma región del espacio con respecto al plano que contiene al doble enlace carbono-carbono.
  • Forma trans; en ella los sustituyentes iguales de los dos átomos de carbono afectados por el doble enlace se encuentran situados en distinta región del espacio con respecto al plano que contiene al doble enlace carbono-carbono.
Por ejemplo:
Isómeros geométricos para el compuesto CH3-CH=CH-COOH
  
  
De ordinario resulta más fácil transformar la forma cis en la trans que a la inversa, debido a que en general la forma trans es la más estable.
Configuraciones y conformaciones
Como acabamos de ver, al estudiar la isomería geométrica, hay ocasiones en que una misma estructura molecular puede adoptar disposiciones espaciales diferentes y estables que resultan ser isómeros espaciales separables. Estas disposiciones espaciales diferentes y permanentes reciben el nombre de configuraciones.
Así las formas cis y trans de los isómeros geométricos son distintas configuraciones de la misma estructura.
La libre rotación en torno a un enlace simple da lugar a que las moléculas puedan adoptar un número infinito de distribuciones espaciales interconvertibles recíprocamente sin ruptura de enlaces. Estas disposiciones espaciales, pasajeras, y que se interconvierten con tanta facilidad que no pueden aislarse isómeros espaciales reciben el nombre genérico de conformaciones.
Dos o más conformaciones diferentes de una misma molécula reciben la denominación recíproca de rotámeros o confórmeros.
De las infinitas conformaciones posibles por libre rotación en torno al enlace simple, no todas son igualmente probables, dependiendo de las interacciones entre los átomos de la misma molécula.
En el etano, que es uno de los casos más sencillos de considerar, las conformaciones más notables son la alternada y la eclipsada. La siguiente figura muestra ambas conformaciones con distintos tipos de representaciones:

 
 
 
 
   
 
 
 
 
 
   
La conformación de mayor contenido energético es la eclipsada debido a que la repulsión entre los átomos de hidrógeno es máxima, mientras que en la conformación alternada es mínima.
Estereoisomería. Isomería óptica
Existen sustancias que al ser atravesadas por luz polarizada plana   producen un giro del plano de vibración de la luz. Se dice que estas sustancias presentan actividad óptica.
Se llaman sustancias dextrógiras las que al ser atravesadas por una luz polarizada plana giran el plano de polarización hacia la derecha (según un observador que reciba la luz frontalmente).
Se llaman sustancias levógiras las que al ser atravesadas por una luz polarizada plana giran el plano de polarización hacia la izquierda (según un observador que reciba la luz frontalmente).
La causa de la actividad óptica radica en la asimetría molecular. En química orgánica la principal causa de asimetría molecular  es la presencia en la molécula de algún átomo de carbono asimétrico. El átomo de carbono asimétrico se caracteriza por estar unido a cuatro grupos diferentes. Se acostumbra a señalar los carbonos asimétricos con un asterisco cuando se quiere poner de manifiesto su carácter de carbonos asimétricos:
En el caso de una molécula con un sólo átomo de carbono asimétrico son posibles dos configuraciones distintas y tales que una cualquiera de ellas es la imagen especular de la otra. Estas configuraciones son recíprocamente enantiomorfas.
Configuraciones enantiomorfas
(imágenes especulares)
Los enantiomorfos son isómeros ópticos, pues teniendo la misma fórmula molecular sólo se diferencian en su acción sobre la luz polarizada. Los enantiomorfos presentan las mismas propiedades químicas y físicas (excepto su acción sobre la luz polarizada). Una mezcla equimolecular (igual número de moléculas) de dos enantiomorfos no presentará actividad óptica. A esta mezcla se le llama mezcla racémica.
La importancia de los hidrocarburos radica en el hecho de que son la base de materiales plásticos, lubricantes, pinturas, textiles, medicinas y también funcionan para generar electricidad. No podemos dejar de lado el papel que juegan los hidrocarburos en el desarrollo de la vida cotidiana, ya que es a través de ellos que podemos realizar nuestras actividades día a día.

Los hidrocarburos son compuestos orgánicos que contienen diferentes combinaciones de carbono e hidrógeno, presentándose en la naturaleza como gases, líquidos, grasas y, a veces, sólidos. El petróleo crudo y el gas natural, que son una combinación de diferentes hidrocarburos, son sus principales representantes.




ALCANOS


El carbono se enlaza mediante orbitales híbridos sp3 formando 4 enlaces simples en disposición tetraédrica.



Nomenclatura:
1.- Cadena más larga: metano, etano, propano, butano, pentano,...
2.- Las ramificaciones como radicales: metil(o), etil(o),...
3.- Se numera para obtener los números más bajos en las ramificaciones.
4.- Se escriben los radicales por orden alfabético y con los prefijos di-, tri-, ... si fuese necesario.
5.- Los hidrocarburos cíclicos anteponen el prefijo ciclo-

Usos:
El gas Butano que es que se emplea en casa en las estufas y en los calentadores de gas, en cosméticos y disolventes como el tiner, aguarraz; elaboración de pilas, varnices, cremas, medicamentos, cloroformo, papel; además se obtiene gasolina C6-C11, queroceno C12-C16, gas-oil C13-C18, y aceite lubricante C16-C20, lubricantes medios, ligeros y pesados, ceras de parafina C20-C30 y bettún asfáltico C30-C40.



ALQUENOS
Los alquenos contienen enlaces dobles C=C. El carbono del doble enlace tiene una hibridación sp2 y estructura trigonal plana. El doble enlace consta de un enlace sigma y otro pi. El enlace doble es una zona de mayor reactividad respecto a los alcanos. Los dobles enlaces son más estables cuanto más sustituidos y la sustitución en trans es más estable que la cis.

Nomenclatura:
1.- Seleccionar la cadena principal: mayor número de dobles enlaces y más larga. Sufijo -eno.
2.- Numerar para obtener números menores en los dobles enlaces.

Usos:
 aceites vegetales líquidos, grasas sólidas para cocinar aunque esta practica ya no es admisible, ya que es más sano usar aceites insaturados de grasas para cocinar; la oleomargarina es un ejemplo de grasa semi-sólida.
Además se hacen alfombras y suéteres con el orlón; se obtiene el teflón,el polietileno, el etileno se utiliza para la fabricación de materiales plásticos como el polietileno y productos químicos como glocol, dioxano. también se utiliza como anestéico y para hacer madurar artificialmente la fruta.






ALQUINOS
Se caracterizan por tener enlaces triples. El carbono del enlace triple se enlaza mediante una hibridación sp que da lugar a dos enlaces simples sigma formando 180 grados y dos enlaces pi. El deslocalización de la carga en el triple enlace produce que los hidrógenos unidos a el tengan un carácter ácido y puedan dar lugar a alquiluros. El alquino más característico es el acetileno HCCH, arde con una llama muy caliente ( 2800 oC) debido a que produce menos agua que absorbe menos calor.
Sus propiedades físicas y químicas son similares a las de los alquenos. Las reacciones más características son las de adición.
Nomenclatura:
1.- Se consideran como dobles enlaces al elegir la cadena principal.
2.- Se numera dando preferencia a los dobles enlaces.
Usos:
El acetileno es un gas que se emplea en la soldadura autogena y que puede alcanzar una temperatura de hasta 3000 ºC, forma con el aire mezclas explosivas; comprimido o licuado es explosivo pero su solución en acetona`puede manejarse con seguridad





El etino es uno de los principales hidrocarburos de los alquinos, más comúnmente conocido como acetileno.

Se emplea en el soplete oxiacetilénico, con el que puede alcanzarse una temperatura de 3000 °C.

Es un gas incoloro, de olor agradable cuando está puro, pero generalmente desagradable porque contiene impurezas como fosfuro y arseniuro de hidrógeno. Es poco soluble en agua y muy soluble en acetona. Arde con llama muy luminosa debido a la gran proporción de carbono que contiene; forma con aire mezclas explosivas y da todas las reacciones de los hidrocarburos acetilénicos verdaderos. También se usa en la preparación de numerosos compuestos, como acetaldehído, etanol, ácido acético, isopropeno, caucho artificial, etc. Merece especial mención su uso en la industria de los materiales plásticos.



 Cicloalcanos
Los cicloalcanos son alcanos que tienen los extremos de la cadena unidos, formando un ciclo. Tienen dos hidrógenos menos que el alcano del que derivan, por ello su fórmula molecular es CnH2n. Se nombran utilizando el prefijo ciclo seguido del nombre del alcano.

Nomenclatura:

Se nombran del mismo modo que los hidrocarburos de cadena abierta de igual número de carbonos pero anteponiendo el prefijo ciclo.


 
Los cicloalcanos con cadenas laterales se deben nombrar de la siguiente forma:
El nombre de la cadena o radical que las forma en primer lugar si existe una ramificación se nombra sucesivamente los radicales con indicación de su posición correspondiente.


Resultan más sencillos nombrarlos como derivados de un cicloalcano que no como derivados de un compuesto de cadena abierta.

Estos compuestos es mejor nombrar como derivados de un alcano de cadena abierta.
Se da nombre a los sustituyentes del anillo- grupos alquilo, alógenos y sus posiciones se señalan con números. Asignamos la posición 1 a un carbono en particular y luego numeramos alrededor del anillo en el sentido de las manecillas del reloj o en el contrario, hacemos todo esto de modo que resulte la combinación de números más bajos.
Usos:
CICLOPENTANOEl Ciclopentano se utiliza como nuevo agente para el poliuretano rígido y
reemplaza las espumas a base de CFC que atacan la capa de ozono atmosférico y contribuyen en aumentar el efecto invernadero.

CICLOHEXANO
La mayor parte del ciclohexano se emplea en la producción de nylon, con cantidades menores destinadas a su uso como disolvente y como agente químico intermedio.
Al ciclohexano suele producirse en combinación con otros disolventes. Una mezcla de disolventes que incluye n-hexano y ciclohexano, conocida como “hexano comercial”, es muy utilizada como disolvente en la industria del calzado.

CICLODECANO
Usado con drogas, preparaciones biológicas y agentes físicos para su uso en la profilaxis y tratamiento de la enfermedad. Incluye uso veterinario y experimental en animales.




HIDROCARBUROS AROMÁTICOS O BENCÉNICOS:
Esta familia corresponde a todos aquellos compuestos que tienen en su estructura al anillo bencénico o benceno.
Benceno:
Es un compuesto cíclico hexagonal formado por 6 átomos de C unidos entre si por simples y dobles ligaduras alternadas y con un átomo de hidrógeno por C.
El que estableció la estructura hexagonal de este compuesto fue Kekulé.
Algunas evidencias de esta estructura la sugieren los compuestos que establece con los halógenos y el hidrogeno ya que se genera un solo derivado monosustituído. Esto explica la regularidad del hexágono, ya que da lo mismo que el átomo entrante se una cualquier vértice. Otra prueba ha sido los ensayos de rayos x que revelaron la forma del hexágono plano, con los átomos de C ocupando los vértices.



Usos:
En la industria química, el benceno puro es la base más importante para los productos aromáticos
intermedios. En base al benceno se elaboran materiales plásticos, caucho sintético, colorantes,
pinturas, materias primas para detergentes.

Entre los hidrocarburos aromáticos más importantes se encuentran:
Las hormonas lípicas (esteroides) y las vitaminas lípidicas (A, D, E y K).
Algunos aminoácidos son aromáticos, también compuestos como la clorofila o la hemoglobina.
Muchos heterociclos3 también son aromáticos como por ejemplo las bases nitrogenadas que
forman los ácidos nucleicos.
Muchos condimentos, perfumes y tintes orgánicos son aromáticos.


En nuestro imaginario colectivo, el petróleo puede ser un elemento muy abstracto. Es decir, la mayoría de nosotros sabemos que se utiliza para la gasolina, y en nuestra mente rondan imágenes de plataformas petroleras en medio del océano o gracias a las películas, pensamos en torres escupiendo petróleo con hombres cubiertos de “oro negro”, corriendo y gritando de felicidad porque se han vuelto ricos.
Pero más allá de eso, ¿para qué sirve el petróleo? Pues el petróleo está más cerca de nuestra vida de lo que pensamos. Pero vamos por el principio…
El petróleo crudo no posee un uso práctico, pero es una materia prima orgánica de gran valor que se utilizó desde los inicios de la humanidad, con el tiempo ha demostrado alto potencial para convertirse en una infinidad de productos y su utilización y explotación se ha ido puliendo con el paso del tiempo.
El petróleo es un hidrocarburo de cadena larga el cual debe ser fragmentado para poder ser utilizado, o sea debe refinarse.
La refinación del petróleo crudo es un proceso por el cual el hidrocarburo se calienta en una caldera a 400 grados centígrados para poder ser destilado y separado. A este proceso se le conoce como “Cracking”. Y es gracias a esto que se pueden realizar diversos derivados que se encuentran en nuestro día a día.
Los principales derivados del petróleo son:
  • El asfaltoSe utiliza para pavimentar calles, carreteras y vías de transporte.
  • Combustibles para coches, aviones y transportes de carga.
  • Lubricantes para motores y maquinaria
  • Vaselinas para aseo personal
  • El gas natural
    Se utiliza en los hogares
  • Los plásticos Se utilizan para la fabricación de bolsas, envases, trastes, botes, sillas, mesas, discos compactos e infinidad de utensilios.
  • Pinturas, recubrimientos e impermeabilizantes
  • Jabones, cosméticos, perfumes y tintes
  • Aditivos para la gasolina
 
¿Qué pasaría si ya no hubiera petróleo?
Colapsaríamos por un tiempo hasta encontrar un sustituto, ya que la sociedad mundial gira en trono al uso de este hidrocarburo.
Una posibilidad para resolver el problema sería la creación de tecnología para reutilizar los distintos derivados del petróleo ya existentes como bolsas, plásticos, aceites usados, entre otros; y otra sería, encontrar un hidrocarburo que tuviera características similares al petróleo.
En el caso especifico de la gasolina, se tendrían que utilizar biocombustibles u otros tipos de energía como celdas de hidrógeno o paneles solares

Quimica organica

El comportamiento del carbono en millones de compuestos corresponde a cuatro electrones desapareados, sin que ninguno de ellos tenga preferencia o mayor capacidad de reacción que los otros tres. Hasta la fecha la única forma que se ha encontrado para explicar este comportamiento es por medio de la teoría de la hibridación.Recordemos que hibridar significa mezclar. Si se mezcla el orbital 2s con los tres orbitales 2p, se tendrá cuatro orbitales híbridos, 2sp3, que tienen exactamente la misma energía y por tanto los electrones colocados en dichos orbitales tendrán la misma capacidad de reacción, como ocurre en todos los compuestos con enlace covalente sencillo.Enlaces carbono-carbono.De esta forma existe la hibridación SF3 (que forma cuatro enlaces sencillos llamados Sigma ð), la hibridación SP2 (que forma un enlace doble llamado y otros dos enlaces sencillos) y la hibridación SP (que forma un enlace triple y un sencillo).Los enlaces sencillos son:• Muy fuertes.• Se llevan a cabo entre 2 híbridos o un híbrido y un halógeno o un hidrógeno.• No pueden rotar.Los enlaces dobles son:• Fáciles de romper.• Se forman solo entre orbitales puros.• Pueden rotar fácilmente.El carbono es un elemento muy importante, ya que puede crear moléculas muy complejas, con gran cantidad de átomos. Esto es debido a su estructura atómica y las propiedades químicas que esta estructura le proporciona.Los átomos del carbono ocupan los orbitales energéticos s y p. El Nivel 1s, con tiene dos átomos, y está saturado, por haber alcanzado su número máximo de átomos. En su nivel sp, (recordemos que el siguiente nivel, sp, tiene un número de saturación de 8 electrones) solamente tiene 4 electrones. Por la tendencia de los elementos químicos a formar enlaces estables, y por esta especial característica del carbono, estos átomos tienen la característica de ceder o admitir los 4 electrones, para estabilizar sus órbitas, lo que le permite actuar con las valencias +4 y -4.Los átomos de valencia, independientemente de su subnivel, tienen la misma capacidad de reacción; sin embargo, según el subnivel energético en que se realicen los enlaces, por efectos de la hibridación (combinación de los orbitales s con los orbitales p, que nos dan cuatro orbitales 2sp [2sp, 2sp1, 2sp2, 2sp3] cada uno disponible para ceder o recibir un electrón) pueden crear diferentes enlaces estructurales entre átomos de carbono, que puede darse en forma natural o ser creados en un laboratorio.Así tenemos que cuando los enlaces se dan en el subnivel energético 2sp3, la estructura tiende a ser prismática, tetraédrica y cristalina. En la naturaleza esta es la estructura del diamante.Cuando los enlaces se llevan a cabo en el subnivel 2sp2, forma estructuras triangulares o hexagonales, que forman capas de anillos. En la naturaleza se encuentra en la estructura del grafito.Si los enlaces suceden a nivel 2sp, entonces las estructuras son lineales y planas.En el laboratorio se ha logado controlar los subniveles de unión de las estructuras químicas para que adquieran ciertas características, como pueden es el caso de los fulerenos o los nanotubos, en los cuales el control de las “conexiones” estructurales del carbono, permiten dar ciertas características geométricas y cristalinas a cada unión atómica para adquirir las estructuras deseadas.En la química orgánica, las combinaciones del carbono pueden adquir diversas estructuras: Lineal (como el propano), Arbóreas (como 2-metil-4etil-pentano) y de anillo (como el benceno) y también se pueden combinar, como la combinación del la estructura de anillo con ramificaciones (arbórea) como el caso de la fructosa.

URL del artículo: http://www.ejemplode.com/38-quimica/607-estructura_del_carbono.html
Leer completo: Estructura del carbono